• 奧林巴斯顯微鏡,普通光學(xué)透鏡系統(tǒng)的缺陷(畸變)

    顯微鏡等光學(xué)儀器的透鏡扭曲的形象的錯誤產(chǎn)生的球面透鏡表面的幾何形狀的缺陷(通常稱為“像差”)與由各種機制所困擾。有三個主要的來源的非理想透鏡作用(錯誤),在顯微鏡觀察。透鏡錯誤的三個主要類別,與波陣面,并相對于焦平面的顯微鏡的光學(xué)軸的方向。這些包括如色差和球面像差的光軸上透鏡的錯誤,主要離軸彗差,像散表現(xiàn)為錯誤,和像場彎曲。第三類的像差,在立體顯微鏡的變焦透鏡系統(tǒng),常見的是,其中包括兩個桶形畸變和

    2020-09-04

  • 奧林巴斯顯微鏡:熒光顯微鏡解剖式講解

    到其他模式基于宏觀上的試樣的功能,如相位梯度,光的吸收,和雙折射的光學(xué)顯微鏡相比,能夠僅僅基于熒光發(fā)射性能的一個單一的分子種類的分布成像的熒光顯微鏡。因此,用熒光顯微鏡,與特定的熒光基團標(biāo)記的胞內(nèi)組分的精確位置進行監(jiān)測,以及其相關(guān)聯(lián)的擴散系數(shù),傳輸特性,以及與其它生物分子相互作用。此外,在熒光顯著的反應(yīng),以本地化的環(huán)境變量可以調(diào)查了pH值,粘度,折射率,離子濃度,膜電位,和在活細胞和組織中的極性溶

    2020-09-04

  • 徠卡顯微鏡:熒光顯微鏡發(fā)光的基本原理

    有很多自然界中的發(fā)光過程。發(fā)光是一個總稱,這些類型的發(fā)光的事件是沒有結(jié)果的高溫。這篇文章描述了不同形式的發(fā)光和熒光的情況下進入細節(jié)。相關(guān)的技術(shù)術(shù)語描述熒光,就像淬滅,漂白或量子產(chǎn)率,說明在第二部分的文章給予詳細的洞察熒光分子的基本特征 發(fā)光過程一些共同的生物學(xué)或生物化學(xué)實驗室方法是基于幾個“... escences”,如磷光,化學(xué)發(fā)光,生物發(fā)光和最后熒光的存在。熒光蛋白作為一個引進的話題,它可能是

    2020-09-04

  • 奧林巴斯顯微鏡:什么是掃描近場光學(xué)顯微鏡(SNOM)

    在衍射極限的光學(xué)顯微鏡的一個基本原則要求的空間分辨率的圖像的入射光的波長,并通過聚光鏡和物鏡系統(tǒng)的數(shù)值孔徑是有限的。發(fā)展近場掃描光學(xué)顯微鏡(NSOM),也經(jīng)常被稱為掃描近場光學(xué)顯微鏡(SNOM),一直需要一種成像技術(shù),實現(xiàn)空間的同時,保留了光學(xué)顯微鏡的方法所帶來的各種對比機制驅(qū)動超越了經(jīng)典的光學(xué)衍射極限的分辨率。掃描近場光學(xué)顯微鏡分類之間更廣泛的器樂組統(tǒng)稱為掃描探針顯微鏡(SPMS)。所有的SPM

    2020-09-04

  • 徠卡顯微鏡:多波長在熒光顯微鏡落射照明

    熒光是一個過程,其中已吸收的光(光子)后的物質(zhì)emitts的輻射的波長(顏色),其中長于吸收光,這個排放停止后立即停止激發(fā)。這種現(xiàn)象是熒光顯微鏡及其應(yīng)用的基本元素。除此之外,“古典”在光學(xué)顯微鏡下的熒光激發(fā),有可能兩個或多個光子具有較長wavengths比發(fā)射的激發(fā)激光共聚焦掃描顯微鏡通過現(xiàn)代技術(shù)來獲得相同的發(fā)光效果。 熒光作為autofluorescenc的生物和/或無機結(jié)構(gòu)或所謂的次級熒

    2020-09-04

  • 尼康顯微鏡:激光對人體的傷害

    當(dāng)激光器首先開始出現(xiàn)在實驗室中,無論是器件及其應(yīng)用是如此專業(yè),安全的激光手術(shù)是一個非常有限的一組研究人員和工程師所面臨的一個問題,是不是普遍關(guān)心的一個主題。在日?;顒又械膽?yīng)用,激光器的急劇增長,以及他們的日常使用科學(xué)實驗室和工業(yè)環(huán)境中,越來越多的研究者必須面對的激光安全問題。激光器已經(jīng)成為不可或缺的組成部分,目前許多光學(xué)顯微鏡技術(shù),并結(jié)合復(fù)雜的光學(xué)系統(tǒng)時,它們可以構(gòu)成重大危險,如果沒有嚴(yán)格遵循安全

    2020-09-04

  • 尼康顯微鏡:在光學(xué)顯微鏡的衍射障礙

    光學(xué)顯微鏡發(fā)揮了核心作用,幫助理清復(fù)雜的生物學(xué)奧秘自從十七世紀(jì)荷蘭發(fā)明家安東尼凡列文虎克,英國科學(xué)家羅伯特·胡克首先報道分別使用單鏡頭及復(fù)合顯微鏡,觀察。在過去的三個世紀(jì)中,廣大的技術(shù)開發(fā)和制造的突破導(dǎo)致了顯著的先進的顯微鏡設(shè)計,極大地提高了圖像質(zhì)量,以最小的像差。然而,盡管計算機輔助光學(xué)設(shè)計和自動化磨削方法用來制造現(xiàn)代的鏡頭組件,基于玻璃顯微鏡仍然阻礙征收可見光的波陣面的衍射光學(xué)分辨率極限,因為

    2020-09-04

  • 奧林巴斯顯微鏡:DIC顯微鏡的基本概念

    活細胞等透明,未染色的標(biāo)本往往是難以觀察到,在傳統(tǒng)的明照明下使用全孔徑和分辨率的顯微鏡的物鏡和聚光系統(tǒng)。,首先在20世紀(jì)30年代開發(fā)的釉澤尼克相襯,經(jīng)常使用這些具有挑戰(zhàn)性的標(biāo)本圖像,但該技術(shù)受到暈文物,被限制到非常薄的樣品準(zhǔn)備,不能利用充分聚光鏡和物鏡孔?;静罡缮鎸Ρ龋―IC)的系統(tǒng),在1955年首次由Francis史密斯設(shè)計,兩個渥拉斯頓棱鏡附加的,一個聚光鏡的前焦平面的變形的偏振光顯微鏡物鏡

    2020-09-04

上一頁1234567...22下一頁 轉(zhuǎn)至第