• 奧林巴斯顯微鏡:熒光顯微鏡解剖式講解

    到其他模式基于宏觀上的試樣的功能,如相位梯度,光的吸收,和雙折射的光學(xué)顯微鏡相比,能夠僅僅基于熒光發(fā)射性能的一個(gè)單一的分子種類的分布成像的熒光顯微鏡。因此,用熒光顯微鏡,與特定的熒光基團(tuán)標(biāo)記的胞內(nèi)組分的精確位置進(jìn)行監(jiān)測(cè),以及其相關(guān)聯(lián)的擴(kuò)散系數(shù),傳輸特性,以及與其它生物分子相互作用。此外,在熒光顯著的反應(yīng),以本地化的環(huán)境變量可以調(diào)查了pH值,粘度,折射率,離子濃度,膜電位,和在活細(xì)胞和組織中的極性溶

    2020-09-04

  • 奧林巴斯顯微鏡:熒光和相襯的組合

    光漂白的影響減到最小,熒光顯微鏡可以不破壞與其他技術(shù)相結(jié)合的熒光染料,如微分干涉相差(DIC),霍夫曼調(diào)制對(duì)比度(HMC),傳送暗場(chǎng)照明,相位相反的。我們的想法是找到一個(gè)感興趣的具體領(lǐng)域使用非破壞性的對(duì)比度增強(qiáng)技術(shù),然后在一個(gè)標(biāo)本,沒(méi)有搬遷的標(biāo)本,在顯微鏡切換熒光模式。這種類型的一個(gè)典型的實(shí)驗(yàn)的結(jié)果示于圖1。圖1(a)示出了使用相位對(duì)比光學(xué)成像的3T3成纖維細(xì)胞的單層組織培養(yǎng)。細(xì)胞行成立由美國(guó)國(guó)立

    2020-09-04

  • 尼康顯微鏡:共聚焦成像模式

    共聚焦顯微鏡的主要應(yīng)用是在厚的部分的各種各樣的標(biāo)本類型的改進(jìn)的成像。共焦的方法的結(jié)果的能力,通過(guò)試樣序列在高分辨率圖像的各個(gè)光學(xué)部分的優(yōu)點(diǎn)。一些使用不同的成像方式,全部依靠的光學(xué)部分,其基本形象單位。單光學(xué)部分光學(xué)部分是圖像的基本單位,在激光共聚焦顯微鏡方法。數(shù)據(jù)可以收集固定和染色標(biāo)本的單,雙,三,或多個(gè)波長(zhǎng)的照明模式,并從多個(gè)標(biāo)記的標(biāo)本采集的圖像將在注冊(cè)與對(duì)方(如果有足夠的校正色差物鏡像差被使用

    2020-09-04

  • 尼康顯微鏡:活細(xì)胞顯微漂移校正焦點(diǎn)

    直到20世紀(jì)80年代末,大多數(shù)生命科學(xué)的研究生物的結(jié)構(gòu)復(fù)雜的細(xì)節(jié),捕捉各種使用固定和染色標(biāo)本(實(shí)際上,非生物)的細(xì)胞學(xué)特征的單一快照。然而,在過(guò)去的幾十年中,在生物科學(xué)和醫(yī)學(xué)的研究已經(jīng)在很大程度上轉(zhuǎn)移了重點(diǎn)調(diào)查浩大的時(shí)間尺度上,從幾毫秒到幾小時(shí)不等的生命系統(tǒng)的分子,細(xì)胞和整個(gè)生物體水平上發(fā)生的動(dòng)態(tài)過(guò)程。過(guò)渡到活細(xì)胞成像的司機(jī)已經(jīng)先進(jìn)的顯微儀器和更敏感的數(shù)碼相機(jī)的發(fā)展,以及新的合成和基因編碼的熒光基

    2020-09-04

  • 奧林巴斯顯微鏡:熒光和DIC的組合

    光漂白的影響減到最小,熒光顯微鏡可以不破壞與其他技術(shù)相結(jié)合的熒光染料,如微分干涉相差(DIC),霍夫曼調(diào)制對(duì)比度(HMC),傳送暗場(chǎng)照明,相位相反的。我們的想法是找到一個(gè)感興趣的具體領(lǐng)域使用非破壞性的對(duì)比度增強(qiáng)技術(shù),然后在一個(gè)標(biāo)本,沒(méi)有搬遷的標(biāo)本,在顯微鏡切換熒光模式。這種類型的一個(gè)典型的實(shí)驗(yàn)的結(jié)果示于圖1。圖1(a)示出的大鼠視網(wǎng)膜視神經(jīng)神經(jīng)節(jié)組織薄截面使用微分干涉對(duì)比成像。顯微照片,圖1(b)

    2020-09-04

  • 奧林巴斯顯微鏡:人類視覺(jué)對(duì)顏色的感知

    人類立體視覺(jué)是一個(gè)非常復(fù)雜的過(guò)程,是不能完全理解,盡管數(shù)百多年的緊張學(xué)習(xí)和建模。視覺(jué)涉及幾乎同時(shí)通過(guò)網(wǎng)絡(luò)的神經(jīng)元,受體,和其他專門細(xì)胞相互作用的兩只眼睛和大腦。在這種感官過(guò)程的第一個(gè)步驟是在眼睛的光受體的刺激,光刺激或圖像轉(zhuǎn)換成信號(hào),包含從每只眼睛的視覺(jué)信息通過(guò)視神經(jīng)向大腦傳輸電信號(hào)。此信息的處理分幾個(gè)階段進(jìn)行,最終到達(dá)大腦的視覺(jué)皮質(zhì)。人類的眼睛是配備的各種光學(xué)元件,包括角膜,虹膜,瞳孔,水和玻璃

    2020-09-04

  • 奧林巴斯顯微鏡:暗場(chǎng)顯微鏡的照明

    我們所有的人都相當(dāng)熟悉的外觀和知名度的恒星在一個(gè)漆黑的夜晚,盡管他們從地球上的巨大距離。明星可以很容易地觀察到夜間,主要是因?yàn)槲⑷醯墓饩€和黑色的天空形成了鮮明的對(duì)比。但是星辰都閃耀著都晚一天,但他們白天是看不見(jiàn)的,因?yàn)閴旱剐缘牧炼鹊奶?yáng)“鋪天蓋地”從星星微弱的光線,使他們看不見(jiàn)。在日全食期間,月亮進(jìn)入地球和太陽(yáng)之間的太陽(yáng)和星星的光擋住了,現(xiàn)在可以看到,即使是白天??傊?,對(duì)一個(gè)黑暗的背景暗淡的恒星光

    2020-09-04

  • 奧林巴斯顯微鏡:DIC顯微鏡的基本概念

    活細(xì)胞等透明,未染色的標(biāo)本往往是難以觀察到,在傳統(tǒng)的明照明下使用全孔徑和分辨率的顯微鏡的物鏡和聚光系統(tǒng)。,首先在20世紀(jì)30年代開(kāi)發(fā)的釉澤尼克相襯,經(jīng)常使用這些具有挑戰(zhàn)性的標(biāo)本圖像,但該技術(shù)受到暈文物,被限制到非常薄的樣品準(zhǔn)備,不能利用充分聚光鏡和物鏡孔?;静罡缮鎸?duì)比(DIC)的系統(tǒng),在1955年首次由Francis史密斯設(shè)計(jì),兩個(gè)渥拉斯頓棱鏡附加的,一個(gè)聚光鏡的前焦平面的變形的偏振光顯微鏡物鏡

    2020-09-04

上一頁(yè)1234567...18下一頁(yè) 轉(zhuǎn)至第