• 尼康顯微鏡,立體顯微鏡簡(jiǎn)介

    凱魯賓奧爾良1671被設(shè)計(jì)和建造的第一個(gè)立體式顯微鏡具有雙目鏡和匹配物鏡,但實(shí)際上是一個(gè)系統(tǒng),只能由應(yīng)用輔助鏡片實(shí)現(xiàn)圖像勃起偽立體儀器。奧爾良設(shè)計(jì)的一個(gè)主要缺點(diǎn)是,左側(cè)的圖像被投射到右目鏡和形象工程的左目鏡右側(cè)。它不是直到150年后,當(dāng)查爾斯惠斯通爵士寫(xiě)了一篇論文,雙目視覺(jué)立體顯微鏡有足夠的利益刺激進(jìn)一步開(kāi)展工作提供動(dòng)力。在十九世紀(jì)中葉,弗朗西斯·赫伯特·溫漢姆倫敦設(shè)計(jì)的第一個(gè)真正意義上成功的體視

    2020-09-04

  • 奧林巴斯顯微鏡:熒光顯微鏡解剖式講解

    到其他模式基于宏觀上的試樣的功能,如相位梯度,光的吸收,和雙折射的光學(xué)顯微鏡相比,能夠僅僅基于熒光發(fā)射性能的一個(gè)單一的分子種類(lèi)的分布成像的熒光顯微鏡。因此,用熒光顯微鏡,與特定的熒光基團(tuán)標(biāo)記的胞內(nèi)組分的精確位置進(jìn)行監(jiān)測(cè),以及其相關(guān)聯(lián)的擴(kuò)散系數(shù),傳輸特性,以及與其它生物分子相互作用。此外,在熒光顯著的反應(yīng),以本地化的環(huán)境變量可以調(diào)查了pH值,粘度,折射率,離子濃度,膜電位,和在活細(xì)胞和組織中的極性溶

    2020-09-04

  • 尼康顯微鏡:活細(xì)胞顯微漂移校正焦點(diǎn)

    直到20世紀(jì)80年代末,大多數(shù)生命科學(xué)的研究生物的結(jié)構(gòu)復(fù)雜的細(xì)節(jié),捕捉各種使用固定和染色標(biāo)本(實(shí)際上,非生物)的細(xì)胞學(xué)特征的單一快照。然而,在過(guò)去的幾十年中,在生物科學(xué)和醫(yī)學(xué)的研究已經(jīng)在很大程度上轉(zhuǎn)移了重點(diǎn)調(diào)查浩大的時(shí)間尺度上,從幾毫秒到幾小時(shí)不等的生命系統(tǒng)的分子,細(xì)胞和整個(gè)生物體水平上發(fā)生的動(dòng)態(tài)過(guò)程。過(guò)渡到活細(xì)胞成像的司機(jī)已經(jīng)先進(jìn)的顯微儀器和更敏感的數(shù)碼相機(jī)的發(fā)展,以及新的合成和基因編碼的熒光基

    2020-09-04

  • 奧林巴斯顯微鏡:人類(lèi)視覺(jué)對(duì)顏色的感知

    人類(lèi)立體視覺(jué)是一個(gè)非常復(fù)雜的過(guò)程,是不能完全理解,盡管數(shù)百多年的緊張學(xué)習(xí)和建模。視覺(jué)涉及幾乎同時(shí)通過(guò)網(wǎng)絡(luò)的神經(jīng)元,受體,和其他專(zhuān)門(mén)細(xì)胞相互作用的兩只眼睛和大腦。在這種感官過(guò)程的第一個(gè)步驟是在眼睛的光受體的刺激,光刺激或圖像轉(zhuǎn)換成信號(hào),包含從每只眼睛的視覺(jué)信息通過(guò)視神經(jīng)向大腦傳輸電信號(hào)。此信息的處理分幾個(gè)階段進(jìn)行,最終到達(dá)大腦的視覺(jué)皮質(zhì)。人類(lèi)的眼睛是配備的各種光學(xué)元件,包括角膜,虹膜,瞳孔,水和玻璃

    2020-09-04

  • 尼康顯微鏡:CCD成像基本原理

    顯微攝影的主要媒介,在過(guò)去的50年里,一直是電影,曾在科學(xué)界以及無(wú)數(shù)忠實(shí)地再現(xiàn)圖像從光學(xué)顯微鏡。它只有在過(guò)去十年中,在電子相機(jī)和電腦技術(shù)的改進(jìn)已經(jīng)使數(shù)字成像更便宜和更容易使用,比傳統(tǒng)攝影。在圖1所示的是一個(gè)尼康Eclipse 600傳輸/反射光顯微鏡配備售后市場(chǎng)的珀耳帖冷卻的數(shù)碼相機(jī)能夠在一個(gè)較長(zhǎng)的累積期間整合圖像。的照相機(jī)系統(tǒng)的控制由一個(gè)單獨(dú)的單元,其容納在一個(gè)IBM兼容個(gè)人計(jì)算機(jī)的FireWi

    2020-09-04

  • 奧林巴斯顯微鏡:DIC顯微鏡的基本概念

    活細(xì)胞等透明,未染色的標(biāo)本往往是難以觀察到,在傳統(tǒng)的明照明下使用全孔徑和分辨率的顯微鏡的物鏡和聚光系統(tǒng)。,首先在20世紀(jì)30年代開(kāi)發(fā)的釉澤尼克相襯,經(jīng)常使用這些具有挑戰(zhàn)性的標(biāo)本圖像,但該技術(shù)受到暈文物,被限制到非常薄的樣品準(zhǔn)備,不能利用充分聚光鏡和物鏡孔?;静罡缮鎸?duì)比(DIC)的系統(tǒng),在1955年首次由Francis史密斯設(shè)計(jì),兩個(gè)渥拉斯頓棱鏡附加的,一個(gè)聚光鏡的前焦平面的變形的偏振光顯微鏡物鏡

    2020-09-04

  • 尼康顯微鏡:隨機(jī)光學(xué)重建顯微鏡(STORM)

    所提供的寬視場(chǎng)的多個(gè)成像模式中,激光點(diǎn)掃描共聚焦,多光子熒光顯微鏡允許非侵入性的,固定和活細(xì)胞和組織中有高水平的特異性生化時(shí)間分辨成像。盡管傳統(tǒng)的熒光顯微鏡的優(yōu)點(diǎn),該技術(shù)在超微結(jié)構(gòu)的調(diào)查,由于光的衍射,可以與標(biāo)準(zhǔn)的目標(biāo)捕獲的信息量限制設(shè)置的分辨率極限的阻礙。在過(guò)去的幾年中,已經(jīng)采用了一些新穎的儀器為基礎(chǔ)的方法來(lái)規(guī)避衍射極限,包括近場(chǎng)掃描光學(xué)顯微鏡(NSOM),受激發(fā)射損耗(STED)顯微鏡,

    2020-09-04

  • 尼康顯微鏡,什么是共振掃描激光共聚焦顯微鏡?

    激光掃描共聚焦顯微鏡已被證明是對(duì)固定和染色的細(xì)胞,組織中一個(gè)有用的工具,甚至整個(gè)生物體的光來(lái)源于區(qū)域從焦平面將消除高對(duì)比度。熒光蛋白在活細(xì)胞成像,然而越來(lái)越多的應(yīng)用,現(xiàn)在需要顯微鏡的成像速度為毫秒級(jí)解開(kāi)在許多生物過(guò)程中發(fā)生的復(fù)雜的動(dòng)力學(xué)。不幸的是,傳統(tǒng)的激光掃描共聚焦顯微鏡由電流計(jì)鏡有限的采集速度,這是一個(gè)線性鋸齒控制信號(hào)以每像素幾微秒的速度驅(qū)動(dòng)。這意味著掃描速率范圍從500毫秒到2秒,取決于圖像

    2020-09-04

上一頁(yè)1234567...11下一頁(yè) 轉(zhuǎn)至第