• 奧林巴斯顯微鏡,普通光學(xué)透鏡系統(tǒng)的缺陷(畸變)

    顯微鏡等光學(xué)儀器的透鏡扭曲的形象的錯(cuò)誤產(chǎn)生的球面透鏡表面的幾何形狀的缺陷(通常稱為“像差”)與由各種機(jī)制所困擾。有三個(gè)主要的來(lái)源的非理想透鏡作用(錯(cuò)誤),在顯微鏡觀察。透鏡錯(cuò)誤的三個(gè)主要類別,與波陣面,并相對(duì)于焦平面的顯微鏡的光學(xué)軸的方向。這些包括如色差和球面像差的光軸上透鏡的錯(cuò)誤,主要離軸彗差,像散表現(xiàn)為錯(cuò)誤,和像場(chǎng)彎曲。第三類的像差,在立體顯微鏡的變焦透鏡系統(tǒng),常見的是,其中包括兩個(gè)桶形畸變和

    2020-09-04

  • 奧林巴斯顯微鏡:熒光顯微鏡解剖式講解

    到其他模式基于宏觀上的試樣的功能,如相位梯度,光的吸收,和雙折射的光學(xué)顯微鏡相比,能夠僅僅基于熒光發(fā)射性能的一個(gè)單一的分子種類的分布成像的熒光顯微鏡。因此,用熒光顯微鏡,與特定的熒光基團(tuán)標(biāo)記的胞內(nèi)組分的精確位置進(jìn)行監(jiān)測(cè),以及其相關(guān)聯(lián)的擴(kuò)散系數(shù),傳輸特性,以及與其它生物分子相互作用。此外,在熒光顯著的反應(yīng),以本地化的環(huán)境變量可以調(diào)查了pH值,粘度,折射率,離子濃度,膜電位,和在活細(xì)胞和組織中的極性溶

    2020-09-04

  • 奧林巴斯顯微鏡:熒光和相襯的組合

    光漂白的影響減到最小,熒光顯微鏡可以不破壞與其他技術(shù)相結(jié)合的熒光染料,如微分干涉相差(DIC),霍夫曼調(diào)制對(duì)比度(HMC),傳送暗場(chǎng)照明,相位相反的。我們的想法是找到一個(gè)感興趣的具體領(lǐng)域使用非破壞性的對(duì)比度增強(qiáng)技術(shù),然后在一個(gè)標(biāo)本,沒有搬遷的標(biāo)本,在顯微鏡切換熒光模式。這種類型的一個(gè)典型的實(shí)驗(yàn)的結(jié)果示于圖1。圖1(a)示出了使用相位對(duì)比光學(xué)成像的3T3成纖維細(xì)胞的單層組織培養(yǎng)。細(xì)胞行成立由美國(guó)國(guó)立

    2020-09-04

  • 尼康顯微鏡:共聚焦成像模式

    共聚焦顯微鏡的主要應(yīng)用是在厚的部分的各種各樣的標(biāo)本類型的改進(jìn)的成像。共焦的方法的結(jié)果的能力,通過(guò)試樣序列在高分辨率圖像的各個(gè)光學(xué)部分的優(yōu)點(diǎn)。一些使用不同的成像方式,全部依靠的光學(xué)部分,其基本形象單位。單光學(xué)部分光學(xué)部分是圖像的基本單位,在激光共聚焦顯微鏡方法。數(shù)據(jù)可以收集固定和染色標(biāo)本的單,雙,三,或多個(gè)波長(zhǎng)的照明模式,并從多個(gè)標(biāo)記的標(biāo)本采集的圖像將在注冊(cè)與對(duì)方(如果有足夠的校正色差物鏡像差被使用

    2020-09-04

  • 尼康顯微鏡:活細(xì)胞顯微漂移校正焦點(diǎn)

    直到20世紀(jì)80年代末,大多數(shù)生命科學(xué)的研究生物的結(jié)構(gòu)復(fù)雜的細(xì)節(jié),捕捉各種使用固定和染色標(biāo)本(實(shí)際上,非生物)的細(xì)胞學(xué)特征的單一快照。然而,在過(guò)去的幾十年中,在生物科學(xué)和醫(yī)學(xué)的研究已經(jīng)在很大程度上轉(zhuǎn)移了重點(diǎn)調(diào)查浩大的時(shí)間尺度上,從幾毫秒到幾小時(shí)不等的生命系統(tǒng)的分子,細(xì)胞和整個(gè)生物體水平上發(fā)生的動(dòng)態(tài)過(guò)程。過(guò)渡到活細(xì)胞成像的司機(jī)已經(jīng)先進(jìn)的顯微儀器和更敏感的數(shù)碼相機(jī)的發(fā)展,以及新的合成和基因編碼的熒光基

    2020-09-04

  • 奧林巴斯顯微鏡:熒光和DIC的組合

    光漂白的影響減到最小,熒光顯微鏡可以不破壞與其他技術(shù)相結(jié)合的熒光染料,如微分干涉相差(DIC),霍夫曼調(diào)制對(duì)比度(HMC),傳送暗場(chǎng)照明,相位相反的。我們的想法是找到一個(gè)感興趣的具體領(lǐng)域使用非破壞性的對(duì)比度增強(qiáng)技術(shù),然后在一個(gè)標(biāo)本,沒有搬遷的標(biāo)本,在顯微鏡切換熒光模式。這種類型的一個(gè)典型的實(shí)驗(yàn)的結(jié)果示于圖1。圖1(a)示出的大鼠視網(wǎng)膜視神經(jīng)神經(jīng)節(jié)組織薄截面使用微分干涉對(duì)比成像。顯微照片,圖1(b)

    2020-09-04

  • 奧林巴斯顯微鏡:DIC顯微鏡的基本概念

    活細(xì)胞等透明,未染色的標(biāo)本往往是難以觀察到,在傳統(tǒng)的明照明下使用全孔徑和分辨率的顯微鏡的物鏡和聚光系統(tǒng)。,首先在20世紀(jì)30年代開發(fā)的釉澤尼克相襯,經(jīng)常使用這些具有挑戰(zhàn)性的標(biāo)本圖像,但該技術(shù)受到暈文物,被限制到非常薄的樣品準(zhǔn)備,不能利用充分聚光鏡和物鏡孔。基本差干涉對(duì)比(DIC)的系統(tǒng),在1955年首次由Francis史密斯設(shè)計(jì),兩個(gè)渥拉斯頓棱鏡附加的,一個(gè)聚光鏡的前焦平面的變形的偏振光顯微鏡物鏡

    2020-09-04

  • 尼康顯微鏡:多色共聚焦顯微鏡的光學(xué)像差和物鏡選擇

    優(yōu)化的設(shè)計(jì)簡(jiǎn)化了激光共聚焦顯微鏡的程度上,它已經(jīng)成為一個(gè)標(biāo)準(zhǔn)的細(xì)胞生物學(xué)研究工具。然而,激光共聚焦顯微鏡變得更加強(qiáng)大,他們也變得更加苛刻的光學(xué)元件的。事實(shí)上,導(dǎo)致圖像質(zhì)量的細(xì)微瑕疵廣角鏡的光學(xué)像差可以產(chǎn)生毀滅性的影響,在激光共聚焦顯微鏡。不幸的是,通常是隱藏的嚴(yán)格的光學(xué)要求,激光共聚焦顯微鏡的光學(xué)系統(tǒng),保證了一個(gè)清晰的圖像,即使在顯微鏡是表現(xiàn)不佳。光學(xué)制造商提供了廣泛的顯微鏡物鏡,分別為特定應(yīng)用設(shè)

    2020-09-04

上一頁(yè)1234567...16下一頁(yè) 轉(zhuǎn)至第