• 奧林巴斯顯微鏡:激光共聚焦顯微鏡系統(tǒng)的結(jié)構(gòu)

    中常用的激光掃描共聚焦顯微鏡的激光是高強(qiáng)度的單色光源,這是有用的工具的各種技術(shù),包括光學(xué)捕獲,壽命成像研究,光漂白恢復(fù),和全內(nèi)反射熒光。此外,激光掃描共聚焦熒光顯微鏡的光源,也是最常見(jiàn)的,并已動(dòng)用,雖然次數(shù)不多,在傳統(tǒng)的寬視場(chǎng)熒光調(diào)查。激光器發(fā)出強(qiáng)烈的包單色光的協(xié)調(diào)性和高度平行,形成一個(gè)嚴(yán)密的光束,以非常低的速度擴(kuò)張。比起其它光源,由激光發(fā)射極純的波長(zhǎng)范圍鹵鎢燈或電弧放電燈是無(wú)與倫比的帶寬和相位關(guān)

    2020-09-04

  • 尼康顯微鏡:水浸物鏡的結(jié)構(gòu)

    薄切固定的組織切片和活細(xì)胞附著到玻璃基板上的微觀調(diào)查,定期制作精湛的高清晰度圖像時(shí),用人的計(jì)劃復(fù)消色差透鏡或螢石物鏡的具有高數(shù)值孔徑。然而,目前的生物研究的顯著量的涉及到生物體組織內(nèi),其中重要的事件可能會(huì)發(fā)生內(nèi)的檢體的深部,遠(yuǎn)離玻璃蓋的細(xì)胞動(dòng)力學(xué)調(diào)查。嘗試細(xì)胞的細(xì)節(jié)圖像,并與傳統(tǒng)的油浸技術(shù)從標(biāo)本玻璃蓋千分尺距離活動(dòng)經(jīng)常遭受的文物,包括嚴(yán)重的光學(xué)像差(球形)。作為液浸介質(zhì)中,使用水代替油,是一種有效

    2020-09-04

  • 徠卡顯微鏡:相襯-使未染色相對(duì)象可見(jiàn)

    相襯是使未染色的相位對(duì)象(例如,扁平細(xì)胞)在光學(xué)顯微鏡下可見(jiàn)的光學(xué)對(duì)比度的技術(shù)。出現(xiàn)在明不起眼的和透明的細(xì)胞可以被視為在高對(duì)比度和豐富的細(xì)節(jié)相襯顯微鏡。使用圖像形成的相移相對(duì)象引起的相移的標(biāo)本的光通過(guò)。因?yàn)橹挥姓穹灰疲◤?qiáng)度差異)對(duì)于人眼或光電檢測(cè)器是可見(jiàn)的,染色的標(biāo)本介導(dǎo)的振幅移位和通過(guò)的光的強(qiáng)度的差異。許多染色試劑的活細(xì)胞是有毒的,但是。相襯顯微鏡提供了一個(gè)可以使用的光程長(zhǎng)度的差異所造成的相移

    2020-09-04

  • 奧林巴斯顯微鏡:反射光顯微鏡的結(jié)構(gòu)

    通常被稱為反射光顯微鏡作為入射光,落射照明,或金相顯微鏡,用于熒光和成像標(biāo)本仍然不透明的,即使當(dāng)研磨的厚度為30微米的是所選擇的方法。屬于這一類的范圍內(nèi)的標(biāo)本是巨大的,包括大多數(shù)金屬,礦石,陶瓷,許多聚合物,半導(dǎo)體(未加工的硅晶片,集成電路),爐渣,煤炭,塑料,涂料,紙,木材,皮革,玻璃夾雜物,和各種各樣的專門材料。因?yàn)楣鉄o(wú)法通過(guò)這些標(biāo)本,它必須被定向的表面上,并最終返回到顯微鏡物鏡無(wú)論是鏡面反射

    2020-09-04

  • 奧林巴斯顯微鏡:萊因伯格照明系統(tǒng)的介紹

    光學(xué)染色的一種形式,萊因伯格照明(Rheinberg Illumination),最初是展示皇家顯微學(xué)會(huì)和Quekett的俱樂(lè)部(英格蘭)在一百多年前由英國(guó)顯微鏡朱利葉斯萊因伯格。這種技術(shù)是一個(gè)顯著的變化,從低到中等功率暗場(chǎng)照明使用彩色明膠或玻璃過(guò)濾器提供豐富的標(biāo)本和背景顏色??梢缘娜R因伯格技術(shù)相比更熟悉的暗場(chǎng)照明。在暗視野顯微鏡,臺(tái)下聚光器配置,使來(lái)自燈的光的光線,通過(guò)聚光鏡,將試樣通過(guò)只在很斜

    2020-09-04

  • 徠卡顯微鏡:熒光定量

    眼見(jiàn)為實(shí)-測(cè)量知道。這個(gè)方程反映在14 個(gè)世紀(jì)科學(xué)的發(fā)展,從自然哲學(xué)到現(xiàn)代科學(xué)同樣適用于熒光成像和生物科學(xué)技術(shù)。顯微鏡生成圖像不僅用于說(shuō)明,但也量化。更先進(jìn)的技術(shù)使用照明模式(無(wú)圖像形成)或不會(huì)產(chǎn)生形象可言-但仍然是顯微技術(shù)。這些F-技術(shù)正變得越來(lái)越重要,在當(dāng)前生物科學(xué)。的擾動(dòng)和松弛:FRAP和FPA一個(gè)非常著名的化學(xué)和物理的方法是放松方法。測(cè)量的信號(hào)-在我們的例子中的熒光強(qiáng)度-平衡常數(shù)。-作為一

    2020-09-04

  • 徠卡顯微鏡:全內(nèi)反射熒光顯微鏡(TIRF)

    全內(nèi)反射熒光(TIRF)是一種特殊的技術(shù),在20世紀(jì)80年代初在安阿伯市密歇根大學(xué)的丹尼爾·阿克塞爾羅德在熒光顯微鏡。全內(nèi)反射熒光顯微鏡提供的圖像具有出色的高軸向分辨率低于100納米。這允許與膜相關(guān)的過(guò)程的觀察。 全內(nèi)反射熒光顯微鏡它允許靠近的玻璃/水(或玻璃/試樣)接口的熒光分子成像。這是通過(guò)采用的漸逝波通過(guò)交付的弧光燈,發(fā)光二極管(LED)或激光的光激發(fā)的熒光基團(tuán),而不是直接照明。如果入射的光

    2020-09-04

  • 奧林巴斯顯微鏡:相差顯微鏡的原理

    搜索仍然是在1930年找到一種方法使用未染色的對(duì)象不吸收光產(chǎn)生良好對(duì)比度的圖像直接和衍射光從各個(gè)方位。在此期間,由Frits Zernike研究露天零階和偏離的光,可以進(jìn)行修改,以產(chǎn)生干擾的有利條件和對(duì)比度增強(qiáng)的相位和振幅之間的差異。未染色的標(biāo)本不吸收光的相位被稱為對(duì)象,因?yàn)樗鼈兩晕⒏淖冊(cè)嚇拥难苌涞墓獾南辔?,通常是通過(guò)延緩這樣的光相比,約1/4波長(zhǎng)的不偏離的直接光通過(guò)試樣周圍不受影響。不幸的是,我

    2020-09-04